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Abstract

In this paper, we present an enhanced approach to
Mobile-Agent-v2, leveraging Retrieval-Augmented Genera-
tion (RAG) to improve intelligent agents’ performance in mo-
bile device operations. While existing mobile operation as-
sistants have shown promise, they often struggle with com-
plex navigation and focused content retrieval. Our method
integrates RAG with a multi-agent architecture, enabling
dynamic access to relevant knowledge during task execu-
tion. The framework consists of five key modules: zero-shot
instruction classification, command generation, retrieval-
augmented generation, multi-agent architecture, and instruc-
tion execution. Through extensive experiments across four
fundamental mobile tasks (ordering drinks, booking tickets,
subscribing, and playing videos), we demonstrate that our
RAG-enhanced approach significantly outperforms baseline
methods. Results show that our method with the Qwen model
achieves perfect performance across all metrics, while re-
quiring fewer interaction steps compared to alternatives. This
work contributes to advancing the capabilities of mobile de-
vice automation through more efficient and accurate task ex-
ecution.

Introduction
In recent years, multimodal large language models
(MLLMs(Bai et al. 2023; Wang et al. 2023; Hu et al. 2024))
have demonstrated significant potential in task planning and
reasoning. The automation of tasks on smartphones, repre-
senting a practical application of multi-modal technology, is
increasingly seen as a pivotal innovation in the evolution of
AI-enhanced mobile devices(Yao et al. 2022a; Deng et al.
2024). However, existing models face limitations in visual
perception, making it challenging to effectively perform op-
erations based on screen content. This is particularly evi-
dent in scenarios requiring complex task navigation and fo-
cused content retrieval, where the performance of traditional
single-agent architectures is hindered by lengthy context se-
quences and interleaved multimodal data formats.

To address these challenges, we Consider using Mobile-
Agent(Wang et al. 2024c), an autonomous mobile device
operation assistant that leverages advanced visual percep-
tion tools to identify and interact with elements on mobile
screens. Unlike approaches reliant on system-level files like
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XML(Zhang et al. 2023) or HTML, Mobile-Agent oper-
ates purely through screen-based visual inputs, offering en-
hanced adaptability across diverse environments. By inte-
grating capabilities such as self-planning, task decomposi-
tion, and error reflection, Mobile-Agent achieves high accu-
racy and completion rates, even in complex multi-app sce-
narios.

Building on this, Mobile-Agent-v2(Wang et al. 2024a)
employs a multi-agent architecture to further improve nav-
igation and operational efficiency. This framework intro-
duces specialized roles—planning agent, decision agent,
and reflection agent—to manage task progress, maintain fo-
cused content, and correct errors dynamically. Experimental
evaluations reveal that Mobile-Agent-v2 significantly out-
performs single-agent systems, achieving notable improve-
ments in task success rates and operational accuracy across
various apps and operating systems. These advancements
highlight the potential of multi-agent collaboration in en-
hancing mobile device automation.

Leveraging RAG(Lewis et al. 2020), we have enhanced
Mobile-Agent-v2 to incorporate a dynamic retrieval system
that enriches its operational context with relevant, up-to-date
information. This integration empowers Mobile-Agent-v2 to
execute tasks with heightened accuracy, particularly in sce-
narios demanding intricate navigation and precise content
manipulation, thus pushing the boundaries of mobile device
automation. By harnessing the strength of RAG, Mobile-
Agent-v2 can access a vast knowledge base to inform its
decision-making process, ensuring that it operates with a
depth of understanding that was previously unattainable.
This is achieved by combining parametric memory with
non-parametric memory, a dense vector index of Wikipedia
accessed with a pre-trained neural retriever, thereby address-
ing some of the issues related to knowledge revision and ex-
pansion, and allowing for the inspection and interpretation
of accessed knowledge(Guu et al. 2020; Karpukhin et al.
2020; Petroni et al. 2020).

The RAG system within Mobile-Agent-v2 works in tan-
dem with the multi-agent architecture, providing the plan-
ning agent with the necessary context to devise effective
strategies, the decision agent with the most current data to
execute commands accurately, and the reflection agent with
the historical insights to learn from past actions. This syn-
ergy not only streamlines the operation process but also sig-



nificantly boosts the overall performance, making Mobile-
Agent-v2 a formidable tool in the realm of mobile device
operation.

Related Work
Agent The basic components of an agent based on a large
model should include planning, tools, actions, and memory.
The execution process of Agent is similar to the way people
do things. (Yao et al. 2022b) suggest that when the Agent
performs the next action, the big model’s own thinking pro-
cess should be added, and the thinking process, execution
tools and parameters, and execution results should be put
into the prompt words. This will enable the model to better
reflect on the completion of the current and previous tasks,
thereby improving the model’s problem-solving ability.

Mobile agent With the development of large language
models(LLMs), agents have become an important way
for them to demonstrate their strong capabilities. Among
them, the applications of multimedia agents in different
fields such as network management, e-commerce, energy
efficiency and metering; wireless multimedia sensors,
grid computing and grid services, distributed data mining,
multimedia, human tracking, security, affective computing,
climate environment and weather, e-learning, positioning,
recommendation and semantic web services show its wide
range of uses(Abdelkader 2009). (Al-Jaljouli and Abawajy
2010) implemented a mobile agent in e-commerce to search
and filter information of interest from an e-marketplace;
(Li et al. 2023) proposed a mobile agent-based framework
that allows different agents to collaborate and commu-
nicate with each other to jointly complete task planning;
(Kakiuchi et al. 2009) proposed a mobile device-based
approach that allows large language models to make
full use of existing devices to track human traces in real
time, demonstrating the ability of mobile agents to use tools.

Muiti-agents Although single-agent systems excel in
specific tasks, they may encounter limitations when dealing
with com plex problems that require extensive collaboration
and collective intelligence. This is where multi-agent sys
tems (MAS) come into play. MAS is a complex system
composed of multiple interacting intelligent agents (Hu
et al. 2021), capable of simulating social interactions and
teamwork in the real world, enhancing overall adaptability
and effi ciency through decentralized decision-making
processes and information sharing. (Abdelnabi et al.
2023)(Xu et al. 2023)(Mukobi et al. 2023)(Wang et al.
2024b) integrate multi-agent interaction with game theo-
retic strategies, aiming to enhance both the cooperative and
decision abilities, opening up a framework for multimedia
agents to solve tasks.

Method
In this section, we will provide a detailed overview of the ar-
chitecture of our proposed framework. The operation of our
proposed framework is iterative, and its process is depicted
in Figure 1. Our proposed framework consists of five mod-

ules: (a) Zero-Shot Instruction Classification, for catego-
rizing user instructions; (b) Command Generation, which
generates execution commands based on task names and
predefined templates; (c) Retrieval-Augmented Genera-
tion (RAG), which retrieves task-relevant external knowl-
edge; (d) Multi-Agent Architecture, a decision-making
framework with reflection mechanisms; and (e) Instruction
Execution Module, which primarily executes mobile com-
mands and also includes visual perception functionalities
(OCR and icon detection).

Zero-Shot Instruction Classification
To efficiently classify user instructions across multiple task
categories, we propose a Zero-Shot Instruction Classifica-
tion approach. Given a user instruction I and a set of task
categories C = {c1, c2, . . . , cn}, the goal is to map I to the
most relevant category ck, where k ∈ [1, n].

The classification process is performed by a large lan-
guage model (LLM) through the conditional probability
P (ck | I), formulated as:

ĉ = arg max
ck∈C

P (ck | I) (1)

To improve classification robustness, the historical classifi-
cation results M are updated iteratively through a memory
mechanism:

Mt = f(Mt−1, ĉt) (2)

where Mt is the memory state at step t, and ĉt represents the
current classification result.

At each iteration, the updated memory Mt is used to re-
fine the classification, obtaining the next predicted category
ĉt+1. This process continues until the results meet the de-
sired performance criteria. Formally, we express this itera-
tive process as:

ĉt+1 = arg max
ck∈C

P (ck | Mt) (3)

This iterative classification continues until we reach the fi-
nal classification ĉT , where T is the stopping time when the
classification result is deemed satisfactory. The final cate-
gory is selected as the output:

ĉ = ĉT (4)

where T corresponds to the number of iterations required to
converge to the optimal classification.

Command Generation
Once the instruction is classified, execution commands are
generated based on the task name ck and associated tem-
plates. Let PT = {PT1, PT2, . . . , PTn} be a set of prompt
templates where PTk corresponds to task ck. The command
generation process can be expressed as:

INS = f(I, PTk, Rtopk) (5)

where INS is the generated command and Rtopk represents
the top-k most relevant pieces of knowledge.
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Figure 1: Illustration of the overall framework of our method, which consists of five modules: (a) Zero-Shot Instruction Clas-
sification, for categorizing user instructions; (b) Command Generation, which generates execution commands based on task
names and predefined templates; (c) Retrieval-Augmented Generation (RAG), which retrieves task-relevant external knowl-
edge; (d) Multi-Agent Architecture, a decision-making framework with reflection mechanisms; (e) Instruction Execution
Module, which primarily executes mobile commands and also includes visual perception functionalities (OCR and icon detec-
tion).

Retrieval-Augmented Generation (RAG)
To enhance the accuracy of command generation, we
adopt a Retrieval-Augmented Generation (RAG) mech-
anism. Given a user instruction I and a dataset D =
{d1, d2, . . . , dm}, the textual embedding for I and D
is obtained using a pre-trained embedding model (e.g.,
BERT(Kenton and Toutanova 2019)):

EI = Embed(I) (6)

ED = {Embed(dj) | j = 1, 2, . . . ,m} (7)

The similarity scores between I and each dj are computed
as:

Sj = cos(EI ,EDj
) (8)

where cos is the cosine similarity. The top-K relevant re-
sults Rtopk = {dk1

, dk2
, . . . , dkK

} are retrieved and used to
enrich the command generation process.

Multi-Agent Architecture
In this subsection, we describe the Multi-Agent Architec-
ture of our proposed framework. This Multi-Agent Archi-
tecture(Wang et al. 2024a) with reflection mechanisms to
handle decision-making and execution refinement. The ar-
chitecture consists of three agents: a planning agent, a deci-
sion agent and a reflection agent.

• Planning Agent: The Planning Agent is designed to re-
duce the reliance on lengthy operation histories during
decision making. It summarizes historical operations and
tracks planning history across iterations. At the t-th iter-
ation, the Planning Agent observes the previous opera-
tion Ot generated by the Decision Agent and updates the

planning history Pt to Pt+1, reflecting the planning com-
pleted so far. The updated planning history Pt+1 is then
passed to the Decision Agent, assisting it in generating
the next operation by focusing on unfinished planning.
The process can be expressed as:

Pt+1 = PA(INS,Ot, Pt,MUt) (9)

where PA represents the large language model (LLM)
employed by the Planning Agent, INS denotes the in-
struction, MUt represents the import content from the
memory unit, and Pt+1 denotes the updated planning his-
tory.

• Decision Agent:The Decision Agent is responsible for
generating operations Ot+1 and executing them on the
device. It utilizes the planning history Pt, import content
from the memory unit MUt, and the page description re-
sult of the screen at iteration t PDt to decide the next
action. Additionally, it updates the memory unit by ob-
serving task-relevant content on the current screen. The
Decision Agent’s operation generation is represented as:

Ot+1 = DA(INS, Pt+1,MUt, Rt, St, PDt) (10)

where DA represents the LLM of the Decision Agent, Rt

denotes the reflection result from the Reflection Agent,
St represents the current screen state, and PDt repre-
sents the page description result of the screen at iteration
t. The memory unit update is represented by:

MUt+1 = DA(INS,MUt, St, PDt) (11)

enabling the agent to store and leverage task-relevant fo-
cus content for future decisions.



Method Order drink Book ticket Subscribe Play video Average

SR SA SR SA SR SA SR SA SR SA

Mobile-Agent V2 (zhipu) 0/2 0.375 0/2 0.214 0/2 0.083 0/2 0.100 0.00 0.212
Mobile-Agent V2 (qwen) 0/2 0.375 0/2 0.143 1/2 0.500 1/2 0.500 0.38 0.365
Ours (zhipu) 0/2 0.500 0/2 0.571 1/2 0.583 1/2 0.800 0.38 0.596
Ours (qwen) 2/2 1.000 2/2 1.000 2/2 1.000 2/2 1.000 1.00 1.000

Table 1: Comparison of RAG completion success rate (SR) and step accuracy (SA) across different methods and tasks. Our
method with qwen achieves perfect performance across all metrics.

Method Order drink Book ticket Subscribe Play video Average

SR Times SR Times SR Times SR Times SR Times

zhipu (w/o RAG) 0/2 2 1/2 3 0/2 3 0/2 4 0.13 3
zhipu (RAG) 2/2 3 2/2 2 2/2 4 2/2 3 1.00 3
qwen (w/o RAG) 0/2 3 1/2 2 2/2 3 0/2 4 0.38 3
qwen (RAG) 2/2 2 2/2 2 2/2 2 2/2 2 1.00 2

Table 2: Comparison of success rates (SR) and required interaction times for completing advanced instructions with and without
RAG across different LLMs and tasks.

• Reflection Agent: The Reflection Agent enhances the ro-
bustness of the framework by evaluating the effectiveness
of the operations executed by the Decision Agent. By
comparing the screen states and perception results before
and after an operation, it determines whether the opera-
tion is erroneous, ineffective, or correct. This process is
defined as:

Rt = RA(INS,MUt, Ot+1, St, PDt, St+1, PDt+1)
(12)

where RA represents the LLM of the Reflection Agent,
St+1 and PDt+1 denote the screen state and perception
results after the operation, respectively. Based on Rt, the
Reflection Agent takes the following actions, as shown in
the Figure 1(where red indicates erroneous and ineffec-
tive operations, and green indicates correct operations):
– Erroneous Operation: Reverts the page to its previ-

ous state without recording the operation in the history.
– Ineffective Operation: Maintains the current state

without recording the operation in the history.
– Correct Operation: Updates the operation history and

progresses the task state accordingly.
This mechanism ensures that the system avoids fol-
lowing suboptimal operations, continuously refining its
decision-making process.

Instruction Execution Module
The Instruction Execution Module, which primarily ex-
ecutes mobile commands, supports the following mobile
commands via ADB:
• Open app (app name): Opens the app named ”app

name” if the current page is the home page.

• Tap (x, y): Taps on the position with coordinates (x, y).
• Swipe (x1, y1), (x2, y2): Swipes from the position with

coordinates (x1, y1) to the position with coordinates (x2,
y2).

• Type (text): Types the content of ”text” in the input box,
assuming the keyboard is active.

• Home: Returns to the home page from any page.
• Stop: Terminates the entire operation process once the

decision agent determines that all requirements have
been fulfilled.

The Instruction Execution Module also integrates three
tools—text recognition, icon detection, and icon descrip-
tion—to enhance the understanding of screen content. Given
a screenshot St as input during the t-th iteration, the module
processes it to extract text and icon information, along with
their respective coordinates. This process is represented by:

PDt = IconD(DINO(St)) +OCR(St) (13)

where PDt is the page description result of the screen at
iteration t. OCR represents Optical Character Recognition.
IconD represents the Icon Description model, which uti-
lizes a visual language model (VLM) to generate the icon
description.

Experiment
To evaluate the performance of our proposed method on real
mobile devices, we adopted a dynamic evaluation method.
We tested our method on Android system, and we used An-
droid Debug Bridge (ADB) as a tool to operate mobile de-
vices. ADB can simulate all operations of Ours in the oper-
ation space. To test the performance of Ours, we designed



four basic tasks, namely: 1. Order milk tea, 2. Book tick-
ets, 3. Click to follow, 4. Play video. For each task, we also
designed 10 different high-level instructions. High-level in-
structions require certain application operation experience to
complete. There are a total of 10 high-level instructions of
application operation in the experiment.

We designed the following two indicators for dynamic
evaluation:

• Success rate (SR): When all requirements of the user
instruction are met, the agent is considered to have success-
fully executed the instruction. The success rate refers to the
proportion of successfully executed user instructions.

• Step accuracy (SA): The ratio between the operation
steps correctly executed by the agent and the complete cor-
rect operation steps.

In addition to comparing our proposed method with the
baseline method Mobile-Agent V2, we also compared the
performance differences of Ours method when using dif-
ferent visual language models qwen-plus and glm-4v-plus.
From the experimental results, it can be seen that compared
with Mobile AgentV2 using the base instruction, the ad-
vanced instruction using RAG completion has greatly im-
proved the performance of Ours on four types of tasks, and
can maintain an amazing success rate under multiple ad-
vanced instructions. In addition, there is an amazing gap in
the performance of the two domestic visual language models
on the agent, and the performance of qwen-plus is far ahead
of the glm-4v-plus model. This shows that qwen-plus is a
better choice when designing mobile agents.

The above experimental results show that the advanced
instruction completed by RAG can significantly improve the
performance of the agent model. This is because the UI lay-
outs in different mobile apps are very different, and the con-
tent and functions of the apps are different. Simple base in-
structions are too difficult for today’s large models. It can
be seen from Table2 that the success rate of the method us-
ing a fixed template to complete the base instruction is much
lower than that of RAG. RAG can effectively utilize external
knowledge bases and reference a large amount of strongly
relevant information to provide more in-depth, accurate, and
valuable answers, thereby improving the reliability of gen-
erated text. In addition, the qwen-plus model can generate
advanced instructions with the same performance in fewer
times.

Conclusion
This paper presents a novel approach to enhancing mobile
device agents through the integration of RAG with multi-
agent architectures. Our experimental results demonstrate
several key findings:

First, the incorporation of RAG significantly improves
the performance of mobile agents, particularly in complex
scenarios requiring intricate navigation and precise content
manipulation. The perfect success rates and step accuracy
achieved by our method with the Qwen model (SR: 1.00,
SA: 1.000) across all four test scenarios validate the effec-
tiveness of our approach.

Second, our comparative analysis reveals that RAG-
enhanced agents require fewer interaction steps to complete

tasks successfully, with an average of just 2 steps compared
to 3-4 steps in baseline methods. This efficiency gain is par-
ticularly notable in advanced instruction scenarios, where
the combination of RAG and multi-agent architecture en-
ables more precise and direct task execution.

Third, our investigation into different language models
shows that the choice of base model significantly impacts
performance, with Qwen consistently outperforming zhipu
across all metrics. This finding highlights the importance of
model selection in developing effective mobile agents.

Looking forward, our work opens several promising di-
rections for future research, including the potential for ex-
panding the range of supported mobile tasks, improving
the robustness of RAG integration, and exploring additional
ways to optimize agent collaboration. These advancements
could further enhance the capabilities of autonomous mo-
bile device operation systems, making them more practical
for real-world applications.
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